64 research outputs found

    From rubber bands to rational maps: A research report

    Get PDF
    This research report outlines work, partially joint with Jeremy Kahn and Kevin Pilgrim, which gives parallel theories of elastic graphs and conformal surfaces with boundary. One one hand, this lets us tell when one rubber band network is looser than another, and on the other hand tell when one conformal surface embeds in another. We apply this to give a new characterization of hyperbolic critically finite rational maps among branched self-coverings of the sphere, by a positive criterion: a branched covering is equivalent to a hyperbolic rational map if and only if there is an elastic graph with a particular "self-embedding" property. This complements the earlier negative criterion of W. Thurston.Comment: 52 pages, numerous figures. v2: New example

    Perturbative 3-manifold invariants by cut-and-paste topology

    Full text link
    We give a purely topological definition of the perturbative quantum invariants of links and 3-manifolds associated with Chern-Simons field theory. Our definition is as close as possible to one given by Kontsevich. We will also establish some basic properties of these invariants, in particular that they are universally finite type with respect to algebraically split surgery and with respect to Torelli surgery. Torelli surgery is a mutual generalization of blink surgery of Garoufalidis and Levine and clasper surgery of Habiro.Comment: 18 pages, many figures. The important change in this version is an improved blowup construction. Also 20-30 typos have been correcte

    The algebra of knotted trivalent graphs and Turaev's shadow world

    Get PDF

    Bordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agree

    Full text link
    Given a link in the three-sphere, Ozsv\'ath and Szab\'o showed that there is a spectral sequence starting at the Khovanov homology of the link and converging to the Heegaard Floer homology of its branched double cover. The aim of this paper is to explicitly calculate this spectral sequence in terms of bordered Floer homology. There are two primary ingredients in this computation: an explicit calculation of bimodules associated to Dehn twists, and a general pairing theorem for polygons. The previous part (arXiv:1011.0499) focuses on computing the bimodules; this part focuses on the pairing theorem for polygons, in order to prove that the spectral sequence constructed in the previous part agrees with the one constructed by Ozsv\'ath and Szab\'o.Comment: 85 pages, 19 figures, v3: Version to appear in Journal of Topolog
    corecore